Section 8.4

Dimensional Analysis and
 Conversions to and from the Metric System

Copyright © 2009 Pearson Education, Inc.

Dimensional Analysis

- Dimensional analysis is a procedure used to convert from one unit of measurement to a different unit of measurement.
- A unit fraction is any fraction in which the numerator and denominator contain different units and the value of the fraction is 1 .
- Examples of unit fractions:

$$
\frac{16 \mathrm{oz}}{1 \mathrm{lb}} \quad \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \quad \frac{12 \mathrm{in} .}{1 \mathrm{ft}}
$$

U.S. Customary Units
U.S. Customary Units 1 foot $=12$ inches 1 quart $=2$ pints 1 yard $=3$ feet 1 gallon $=4$ quarts 1 mile $=5280$ feet 1 minute $=60$ seconds 1 pound $=16$ ounces 1 hour $=60$ minutes 1 ton $=2000$ pounds 1 day $=24$ hours 1 cup (liquid) $=8$ fluid ounces 1 pint $=2$ cups 1 year $=365$ days
A.

Example: Using Dimensional Analysis

- A recipe calls for 8 cups of blueberries. How many pints is this?
Solution:

$$
8 \text { cups }=(8 \text { cups })\left(\frac{1 \text { pint }}{2 \text { cups }}\right)=4 \text { pints }
$$

- Convert 75 miles per hour to inches per minute.

Solution:

$$
\begin{aligned}
& 75 \frac{\mathrm{mi}}{\mathrm{hr}}=\left(75 \frac{\mathrm{mi}}{\mathrm{hr}}\right)\left(\frac{5280 \mathrm{ft}}{1 \mathrm{mi}}\right)\left(\frac{12 \mathrm{in}}{1 \mathrm{ft}}\right)\left(\frac{1 \mathrm{hr}}{60 \mathrm{~min}}\right) \\
& =\frac{(75)(5280)(12)}{60} \frac{\mathrm{in}}{\min }=79,200 \frac{\mathrm{in}}{\mathrm{~min}}
\end{aligned}
$$

Conversion to and from the Metric

 System - Length| U.S. to Metric |
| :---: |
| 1 inch $(\mathrm{in}.) \approx 2.54$ centimeters (cm) |
| 1 foot $(\mathrm{ft}) \approx 30.48$ centimeters (cm) |
| 1 yard $(\mathrm{yd}) \approx 0.91$ meter (m) |
| 1 mile $(\mathrm{mi}) \approx 1.61$ kilometers (km) |

Conversion to and from the Metric System - Area

UREA
U.S. to Metric
1 square inch $\left(\right.$ in. $\left.{ }^{2}\right) \approx 6.5$ square centimeters
$\left(\mathrm{cm}^{2}\right)$

Conversion to and from the Metric System - Volume

VOLUME
U.S. to Metric
1 teaspoon $(\mathrm{tsp}) \approx 5$ milliliters $(\mathrm{m} \mathrm{\ell})$
1 tablespoon $(\mathrm{tbsp}) \approx 15$ milliliters $(\mathrm{m} \mathrm{\ell})$
1 fluid ounce $(\mathrm{fl} \mathrm{oz}) \approx 30$ milliliters $(\mathrm{m} \mathrm{\ell})$
$1 \operatorname{cup}(\mathrm{c}) \approx 0.24$ liter (ℓ)
1 pint $(\mathrm{pt}) \approx 0.47$ liter (ℓ)

Conversion to and from the Metric System - Volume

VOLUME
U.S. to Metric
1 quart $(\mathrm{qt}) \approx 0.95$ liter (ℓ)
1 gallon $(\mathrm{gal}) \approx 3.8$ liters (ℓ)
1 cubic foot $\left(\mathrm{ft}^{3}\right) \approx 0.03$ cubic meter $\left(\mathrm{m}^{3}\right)$
1 cubic yard $\left(\mathrm{yd}^{3}\right) \approx 0.76$ cubic meter $\left(\mathrm{m}^{3}\right)$

Conversion to and from the Metric

 System - Weight (Mass)| WEIGHT OR MASS |
| :---: |
| U.S. to Metric |
| 1 ounce $(\mathrm{oz}) \approx 28$ grams (g) |
| 2.2 pounds $(\mathrm{lb}) \approx 1$ kilogram (kg) |
| 1 ton $(\mathrm{T}) \approx 0.9$ tonne (t) |

Example: Volume and Area

- A gas tank holds 22.6 gallons of gas. How many liters is this?
Solution:

$$
22.6 \mathrm{gal} \times \frac{3.8 \ell}{\mathrm{gal}}=85.88 \ell
$$

- The area of a box is $14.25 \mathrm{in}^{2}$. What is its area in square centimeters?
Solution:

$$
14.25 \mathrm{in}^{2}\left(\frac{6.5 \mathrm{~cm}^{2}}{1 \mathrm{in}^{2}}\right)=92.625 \mathrm{~cm}^{2}
$$

Example: Converting Speed

A road in Toronto, Canada shows that the speed limit is 62 kph . Determine the speed in miles per hour.

Solution:

$$
62 \mathrm{~km}\left(\frac{1 \mathrm{mi}}{1.6 \mathrm{~km}}\right)=\frac{62}{1.6} \mathrm{mi}=38.75 \mathrm{mi}
$$

- Since 62 km equals $38.75 \mathrm{mi}, 62 \mathrm{kph}$ is equivalent to 38.75 mph .

Example: Weight (Mass) Conversion for Medication

A newborn baby weighs 8 pounds 4 ounces. If 20 mg of a medication is given for each kilogram of the baby's weight, what dosage should be given?

Solution:

$$
\begin{aligned}
& 8 \mathrm{lbs}\left(\frac{16 \mathrm{oz}}{1 \mathrm{lb}}\right)+4 \mathrm{oz}=128 \mathrm{oz}+4 \mathrm{oz}=132 \mathrm{oz} \\
& 132 \mathrm{oz}\left(\frac{28 \mathrm{~g}}{\mathrm{oz}}\right)\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{20 \mathrm{mg}}{1 \mathrm{~kg}}\right)=73.92 \mathrm{mg}
\end{aligned}
$$

The dosage of the medication is 73.92 mg .

